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Abstract—An analysis is made of natural convection in a square enclosure, of which one vertical wall is
cooled by an external natural convection boundary-layer flow. The other vertical wall is maintained at a
uniform temperature while the horizontal walls are adiabatic. The resulting conjugate internal-external
natural-convection problem was solved numerically for Grashof numbers between 10° and 107 and for a
Prandtl number of 0.7. Approximate solutions were also obtained using a model which avoids conjugate-
type computations. For comparison purposes, a set of solutions were carried out for the standard natural-
convection enclosure problem characterized by prescribed uniform temperatures on the vertical wails and
adiabatic horizontal walls. For the overall heat transfer characteristics encompassing both the internal and
external flows, the average Nusselt number displayed a power-law dependence on the Grashof number given

by Nu = 0.0907 Gr°2®% for Gr > 10*. These Nusselt numbers are about sixty per cent of those for the standard
enclosure, at common values of the respective Grashof numbers. The local heat flux variations along the
convectively cooled wall were found to be appreciably smaller than those along the heated isothermal wall,
reflecting the counterflow nature of the heat exchange between the internal and external flows. In addition, the
temperature variations along the convectively cooled wall increased with increasing Grashof number. The
Grashof number also decisively affected the temperature distributions along the adiabatic walls. Streamline
maps revealed little difference between the flow fields adjacent to the thermally active and thermally passive
walls at low Grashof numbers, but marked differences were in evidence at high Grashof numbers. For the
external natural convection, the local heat transfer coefficients were generally larger than those predicted by
the local application of the classical isothermal-plate heat transfer coefficient formula.
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NOMENCLATURE B, coefficient of thermal expansion;
Grashof number, equations (5) and (27); 0,  dimensionless temperature, (T — Ty)/
acceleration of gravity; (Ty —Tx);
local heat transfer coefficient for external v kinematic viscosity;
flow; 0 density;
thermal conductivity; 1 dimensionless coordinate, equation (11);
length of side of enclosure; Y,  stream function;
average Nusselt number, equations (25) and Q,  multiplying factor in representation of h,
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dimensionless pressure, equation (4);
Prandtl number;

pressure;

overall rate of heat transfer;

local heat flux;

temperature;

temperature of cooled wall for standard
enclosure;

temperature of isothermal heated wall;
temperature distribution along adiabatic
walls;

temperature distribution along convectively
cooled wall;

ambient temperature;

velocity components;

dimensionless velocities, equation (3);
dimensionless velocities, equation (10);
dimensionless coordinates, equation (4);
coordinates;

coordinate, (x — L);

equations (22) and (30).

INTRODUCTION

NATURAL convection within rectangular enclosures
has attracted considerable attention in recent years
both from an applications standpoint and as a
standard problem for numerical computation. The
standard problem is concerned with two-dimensional
buoyancy-driven flow in a rectangle whose vertical
sides are maintained at uniform but different
temperatures while the horizontal sides are adiabatic.
This situation is shown schematically in Fig. 1(a),
where T, and T, denote the uniform temperatures of
the vertical walls (T, > T,). There is extensive
literature devoted to this problem, the earlier
contributions to which were reviewed by Ostrach [1].
Representative contributions to the recent literature
are typified by Jones [2] and Reddy and Satake [3].
These, together with the recently-published survey by
Bejan [4], convey bibliographies encompassing the
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FiG. 1. Natural convection enclosure problems. {a) Standard enclosure problem with prescribed uniform
temperatures on the vertical walls. (b) Conjugate internal buoyancy-driven flow and external natural
convection boundary layer flow.

main work of the past decade.

Whereas the thermal boundary conditions indicated
in Fig. 1(a) constitute a well-defined standard case,
they are somewhat restrictive in that they do not reflect
possible thermal interactions between the enclosure
and the surroundings. Typical among such
interactions would be the transfer of heat by natural
convection between one of the walls of the enclosure
and the adjacent surroundings. Such a situation is
pictured schematically in Fig. 1(b), and this defines the
problem that is the focus of the present study.

Examination of Fig. 1(a,b) reveals significant
differences between the standard enclosure problem
and that which is investigated here. The standard
problem deals with the buoyancy-driven recirculating
flow in the enclosure; it involves thermal boundary
conditions on the enclosure walls which are known
and specified in advance. However, the present
problem actually deals with two flows—the
recirculating flow in the enclosure and the external
boundary layer flow along the right-hand wall of the
enclosure. The temperatures T, (=constant) and T,
respectively at the left-hand wall and in the ambient
fluid, are regarded as being given; the temperature at
the right-hand wall is unknown. Its magnitude and
distribution along the height of the wall are
determined by the dynamics of the heat transfer
process. Thus, the full complement of thermal
boundary conditions needed to solve either of the
flows is not known in advance. Consequently, the
solution scheme must accommodate thermal
interactions between the internal and external flows
such that the wall-temperature distribution emerges as
one of the results.

Thus, the coupling of the two flows and the
determination of the boundary conditions are
distinguishing features of the present problem. In view
of the coupling, the problem is of the conjugate type,
and it is one of the few conjugate problems in the
literature where the two contributing sub-problems

are both natural-convection flows.

The two natural-convection flows are, however,
fundamentally different in nature. The external flow is
a boundary layer. An essential feature of a boundary-
layer flow is that the velocity and temperature at a
given point are not influenced by happenings
downstream of that point. Thus, a numerical solution
can be obtained by a marching procedure which starts
at the leading edge and proceeds downstream in the
flow direction. On the other hand, because of the
recirculating nature of the flow within the enclosure,
the velocity and temperature at a point are influenced
by both upstream and downstream happenings
(indeed, that which is downstream of a point is also
upstream). Thus, due to this coupling, a numerical
solution for the fluid flow and temperature fields
within the enclosure must deal simultaneously with all
points.

Frequently, boundary layer and recirculating flow
problems are respectively characterized as parabolic
and elliptic—these designations coming from the
mathematical and computational nature of the
respective  problems (marching vs all-point
interaction). The need to deal with interacting
parabolic and elliptic problems is another special
feature of this study.

The flow directions indicated in Fig. 1(b)
correspond to the condition T, > T,. The upflow in
the external boundary layer and the downflow in the
adjacent internal flow give rise to a counterflow heat
exchange situation, the ramifications of which will be
amplified during the presentation of results.

The solutions were carried out numerically for
Grashof numbers Gr = 103, 10*, 10°, 10° and 10”. Not
only were solutions obtained for the conjugate internal
flow—external flow problem, but a set of solutions was
also carried out for the standard enclosure problem
(Fig. 1(a)). These supplementary solutions were
obtained in order to provide perspective for the results
of the conjugate problem. Although literature
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solutions do exist for the standard problem, it was felt
that for definitive comparisons of the standard and
conjugate problems, both sets of solutions should be
obtained with the same methodology and
computational procedures.

For the solutions, the fluids within and external to
the enclosure were assumed to have the same
thermophysical properties, with Prandtl number Pr =
0.7. The enclosure was taken to be a square, such that
L, =L, =L

Results in dimensionless form will be presented for
the overall rate of heat transfer across the enclosure
and for the local rates of heat transfer at the thermally
active walls. Temperature distributions for the right-
hand wall will be reported, as will the temperature
distributions along the two adiabatic walls. Flow
patterns will be displayed in terms of streamline
maps. Wherever appropriate, comparisons will be
made between the results of the conjugate problem and
those of the standard enclosure. In addition, results of
a simplified computational model for the conjugate
problem will also be presented in order to establish its
accuracy.

ANALYSIS

Problem formulation

In formulating the conjugate internal flow-external
flow natural convection problem, it is convenient first
to deal serially with the conservation equations for
each of the component problems. The formulation is
then completed by the statement of the boundary
conditions and of the matching conditions at the
interface between the external and internal flows.

Attention is first directed at internal flow. The
buoyancy force is deduced by considering the terms
(—0p/0y — pg) which appear in the y-momentum
equation and then adding and subtracting the
constant p,g (p, corresponds to the density of the
ambient fluid). When a Boussinesq-type equation of
state, i.e.

Po—p=Bp(T-T,) €9
is used, the foregoing terms become
—0(p + pxgy)/oy + gBp(T — Ty). @)

The last term in equation (2) is readily identified with
the buoyancy force while the quantity (p + p.gy) that
appears in the first term is a hydrostatic-supplemented
pressure. Note that the involvement of p . as adatumis
somewhat arbitrary. The density p, associated with T,
could also have been used as the datum. In either case,
the final dimensionless conservation equations are the
same.

The dimensionless variables, coordinates and
parameters which yield the simplest form of the
conservation equations for the internal flow are

U =u/(v/L), V =v/(v/L),
0=(T-THT,~T,) (3)

HMT 24:5 - H
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P=(p+pgy)/pW/L?, X=x/L, Y=y/L (4)
Gr = gB(T, — T,,)L3/v*, Pr=c,p/k. (5)

The conservation equations which result from the
use of equations (2) through (5) are

ULV _y (6)

oX | aY
UZ_;;+VZ—I;=—%+V2U M
U%+VZ—;/,=—Z—Z+Gr0+V2V ®
Ug_;"(Jr Vjé:%vze 9)

in which V? = 0%/0X? + 6%/0Y?. These equations
contain two dimensionless parameters, Gr and Pr.

Attention may now be turned to the external flow,
which is a boundary-layer flow. Here, the buoyancy-
related terms (—dp/dy — pg) in the y-momentum
equation become (p g — pg) because dp/dy = dp /0y
= —p.g, and the density difference (p, — p) is
transformed to a corresponding temperature
difference with the aid of equation (1). Since the
thermal conditions along the wall x = L which bounds
the external flow are not of an elementary type, there is
no hope of encountering a similarity solution.
Therefore, the conservation equations have to be dealt
with in their partial-differential equation form.

To attain the simplest dimensionless form of the
conservation equations for the external flow, the
following change of variables is made

U = (uL/v)/Gr'**, V= (vL/v)/Gr'?,
0= (T - T )(T,—Tz) (10)
X=x—L Y=yL (1)

The different scaling of u and v and of x and y is
consistent with the known characteristics of natural-
convection boundary-layer flows. Note also that x and
y respectively denote the transverse and streamwise
coordinates, in contrast to the usual designations.

1= (X/L)Gr'*,

With these, the dimensionless conservation
equations for the boundary layer are

%IXZ + g =0 (12)

0%+?g=e+% (13)

Og—Z+ 172—2:% 2272. (14)

In these equations, only one parameter, the Prandtl
number, appears.

In the transformations that were employed for the
internal and external problems, the same
thermophysical properties were employed for both.
This approach was adopted to avoid involvement with
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an excessive number of prescribable parameters. It
may also be noted that aside from Y and 6, different
transformations were employed for the internal and
external problems. This does not cause any difficulties,
since, as will be shown, it is only Y and 6 that are
involved in the continuity relations that link the
internal and external problems. The internal
transformation is precisely that which would have
been employed for the case of pure internal flow (no
coupling to an external flow), while the external
transformation is that which would have been used
had the external flow acted alone.

Attention may now be turned to the boundary and
continuity conditions. The velocity boundary
conditions are those that are commonly employed

U=V =0, U=7V=0on solid boundaries  (15)
V—0as y— o0. (16)
For the temperature, the conditions
00
0=1 d —=0 17
an £ a”n
are respectively appropriate for the left-hand

boundary and for the top and bottom boundaries of
the enclosure, while for the external flow

6—0 as y— co. (18)

The remaining conditions are those which deal with
the temperature and heat flux at the boundary x = L
which separates the internal and external flows (i.e. the
right-hand boundary of the enclosure). There are
various models which can be considered for the heat

transfer processes in the wall that separates the flows. -

The simplest model is that in which both the thermal
resistance across the thickness of the wall and the net
conduction in the streamwise direction are negligible.
For that case, which is the one to be considered here,
both the temperature and the heat flux are continuous
across the thickness of the wall.

The manner in which the continuity conditions are
employed depends on the specifics of the method used
to solve the conjugate problem. The solution
methodology will now be described.

Solution methodology

In view of the complexity of the conjugate problem,
a numerical solution is mandatory. The general
approach is to work separately and successively with
the two flows, feeding thermal information from one
flow to the other across the common boundary x = L.
Thus, for fixed values of the parameters, the solution
procedure begins with the internal flow, then goes to
the external flow, then returns to the internal flow, and
so on until a converged solution is obtained. The key
feature in the procedure is the method used to transfer
information between the two flows, as will now be
described.

It has been our experience that in conjugate
problems, more rapid convergence of an iterative
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solution scheme is achieved if, whenever possible,
thermal information is transferred via the heat transfer
coefficient than via the temperature or the heat flux.
This is because at any stage of an iterative scheme, the
transfer coefficient is usvally closer to its converged
value than are other quantities.

With this in mind, the thermal boundary condition
at x = L for the internal flow was written as

—ka—7:=h(T —T,), x=L
ox

(19)
where h is the local heat transfer coefficient for the
external natural convection boundary layer flow
adjacent to x = L. The numerical values of h needed in
implementing equation (19) are not actually known
until the solution procedure has converged. However,
since the procedure is an iterative one, provisional
values of h can be used at each stage of the iteration,
and these provisional values are successively refined as
the solution converges.

With regard to the thermal boundary condition at x’
= 0 (i.e. x = L) for the external flow, initial
consideration was given to a representation analogous
to equation (19), that is

oT
ox’
where h;,,, represents the local coefficient at x = L for
the internal flow. The subscript symbol ? conveys the
uncertainty that prevails about the rational choice of a
reference temperature on which to base the definition
of the local coefficient. We were unable to identify a
simple reference temperature which truly participates
in driving the internal heat transfer at x = L. Because
of this, equation (20) was not employed as a boundary
condition for-the external flow. Rather, at each stage of
the iteration, the external flow was solved with a given
surface temperature distribution at x’ = 0. The
temperature distribution, § vs Y, was taken from the
immediately preceding internal flow computation.

Taking the above paragraphs into account, a
possible scenario for the numerical solution of the”
conjugate problem might proceed as follows. First, the
parameters Gr and Pr are chosen. Then, for any
selected uniform wall temperature at x' = 0, the
external natural-convection boundary layer is solved.
yielding the distribution of the heat transfer coefficient
along the wall. Next, attention is shifted to the internal
problem, and the just-determined external heat
transfer coefficients are used as input to the boundary
condition (19). The internal problem is then solved,
and this solution yields the temperature distribution
along x = L. That temperature distribution serves as
the wall boundary condition for the external
boundary layer, and the corresponding solution
provides an updated distribution of the heat transfer
coefficient. These coefficients are transmitted to
equation (19), and the internal problem is re-solved.
This procedure may be continued until convergence is
achieved.

—k—— =hu(T, = T), x'=0 (20)
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The just-discussed procedure, while plausible, is not
the one that was actually employed to solve the
problem. The reason for its not being used can be
explained by noting that the natural-convection heat
transfer coefficient for boundary-layer flow should
respond to the local wall-to-ambient temperature
difference as well as to the streamwise distance from
the leading edge. In the aforementioned scheme, the h
values, as used in equation (19) and as perceived by the
internal flow solution, are a given function of position
at each stage of the iteration (the function of position
changes from cycle to cycle). However, as the internal
solution updates the wall-temperature distribution
along x = L, h does not respond promptly. Indeed, the
effect of the updated wall temperature on his not felt by
the internal solution until the next cycle of the
iteration. Itis this lag that prompted the use of another
approach, which will now be described.

To begin, it may be noted that for natural
convection about a vertical plate with a uniform wall
temperature T, the local heat transfer coefficient for
Pr=07is

h = (0.3532k/y) [gB(T., — T)y**1'.  (21)

Suppose that for a plate with a variable wall
temperature T,,, equation (21) were to be applied
locally (ie. replace T, by 7,,) to predict h(y). If such
predictions were then compared with the actual h(y)
values obtained from a solution of the boundary layer
equations, deviations would be encountered. Let Q(y)
denote the ratio of the actual h(y) to that predicted by
equation (21). Then, error-free predictions would be
obtained by modifying equation (21) to read

h = (0.3532kQ(y)/y) [gB(Tw, — T)y*v*]14. (22)

Equation (22) is the h formula which was used as
input to the boundary condition (19), with the
provision that T,, be treated as an unknown as the
computations for the internal problem are being
performed. This enables the updating of the wall-
temperature distribution which occurs during the
internal solution to have an immediate effect on the h
distribution. The substitution of (22) into (19) and the
introduction of dimensionless variables yields

(= 00/0X)/Gr'/ = 0.3532Q(Y)95*/Y 4, X =1 (23)

where Gr is a prescribed constant.

Now, with equation (23) in hand, the steps of
solution will be described. As before, values of the
parameters Gr and Pr are selected and fixed. Attention
is first focused on the internal problem, which is solved
subject to Q(Y) = 1 in equation (23). The resulting
0(Y) at X = 1 becomes the wall boundary condition
for the external problem, the solution to which yields a
distribution of Q(Y) as discussed in the text following
equation (21). In particular, if 06/dy is the local
derivative at the wall which results from the boundary-
layer solution, Q(Y) is evaluated as

Q(Y) = (—80/0y)Y1/0.353205%, 4 =0. (24)
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The thus-determined Q(Y) are fed to equation (23),
and the internal problem is solved anew. The wall
temperatures at X = 1 from that solution are inputed
to the boundary-layer problem, whose solution yields
an updated set of Q(Y) via equation (24). This
procedure is continued until convergence.

Now that the general pattern of the solution
methodology has been established, attention will be
turned to certain relevant details. Numerical solutions
of the boundary layer problem were obtained by
employing the Patankar—Spalding method [5]. This is
an implicit finite-difference scheme, a special feature of
which is that as the boundary-layer thickness varies,
the grid automatically follows the variation. To ensure
high accuracy consistent with reasonable execution
time, a step size study was performed prior to the
initiation of the main calculations, with the available
similarity solution for uniform wall temperature used
as a standard. The final grid pattern encompassed 160
points in the cross-stream direction and slightly less
than 5000 points in the streamwise direction. This
large number of points (~800000) was easily
accommodated because of the marching nature of the
solution in the streamwise direction. In particular, to
obtain the solution at any streamwise station, it is only
necessary to know the values of the dependent
variables at the station immediately upstream.

As explained in the Introduction, the internal-flow
problem requires a solution scheme that is basically
different from that used for the boundary layer. The
scheme employed here is that of Patankar [6]. It is
iterative in nature, beginning with guessed values for
U, V, P and 0 and then refining these values until
convergence. At this point, it is important to draw a
sharp distinction between the two types of iterations
that were required in solving the conjugate problem.
One type is the cyclic and successive involvement with
the internal and external problems, passing from one
to the other as described earlier. The other iterations
are those required to solve the internal flow problem at
each stage of the aforementioned cyclic procedure.

A 30 x 30 grid was employed to solve the internal
problem. The deployment of the grid was tailored to
the specifics of the velocity field for each Grashof
number. The tailoring was performed on the basis of
preliminary computer runs for 103, 10%,..., and 107 for
the standard enclosure problem (¢ = 1 and 6 = 0,
respectively at the left- and right-hand boundaries).
From these solutions, velocity and temperature field
graphs were prepared and, with these, the grid points
were positioned so as to resolve all of the main features
of the flow. This grid deployment was then used for all
of the final computer runs.

Convergence of the iterative scheme for the internal
flow problem was attained without difficulty. The
initial guessed valueswereU = ¥V = P = 0and 0 = 1.
Both U and V were underrelaxed, with an
underrelaxation factor of 0.5 for all Gr, except for Gr =
107 where a factor of 0.2 was used for V. The
temperature @ was not underrelaxed for Gr = 103 and
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F1G. 2. Average Nusselt numbers.

10%, while factors of 0.8, 0.5 and 0.5 were employed for
Gr = 10°, 10° and 107.

As noted in the Introduction, a set of solutions for
the standard enclosure problem was obtained for
comparison with those for the conjugate problem. For
the standard problem, only the internal flow need be
solved, and the Patankar method [6] was employed
for the purpose. The starting values for the iterative
solution were as stated in the preceding paragraph,
except that § was selected to vary linearly between one
and zero between the two vertical walls. The relaxation
factors used in these solutions were identical to those
used in the conjugate problem.

As a validation of the solution method, the present
heat transfer results for the standard enclosure
problem were compared with those of McGregor and
Emery [7]. The Grashof number range of McGregor
and Emery extended up to about 2 x 10° rather than
to the present 107. Within our ability to read the
graphical presentation of McGregor and Emery, it
appears that agreement at the one per cent level
prevails.

RESULTS AND DISCUSSION

The presentation of results begins with the average
Nusselt number for the conjugate problem as a whole,
spanning both the internal and external flows. This is
followed by the local heat transfer results for the
thermally active walls. Temperature distributions are
then presented for the wall which separates the two
flows and for the adiabatic walls of the enclosure.
Local heat transfer coefficients for the external natural
convection flow will be conveyed in terms of the Q
parameter that was introduced in equation (22). The
presentation concludes with flow patterns for
representative cases displayed via streamline maps.

Heat transfer
The overall rate of heat transfer Q passing across the

enclosure into the ambient fluid can be evaluated by
integrating the local heat flux along either of the
thermally active walls of the enclosure or along the
bounding surface of the external flow. All of these
integrations yield identical results. If an average

Nusselt number Nu is defined as
Nu = (Q/L(T,, — T )(L/K) (25)

it follows that, for instance, at the right-hand wall of

the enclosure
— t 00
Nu = f ——dY
0

X (26)

The average Nusselt number results for the
conjugate problem are plotted as a solid line in Fig. 2
as a function of the Grashof number. There are, in
addition, two other lines in Fig. 2. The dashed line

portrays the Nu results for the standard enclosure
problem with uniform temperatures T, and T, on the
respective vertical walls of the enclosure [Fig. 1(a)]. In
this connection, it is important to note the different

definitions of Nu and Gr for the standard enclosure
relative to those for the conjugate problem. The
difference is that T, is replaced by the cold-wall
temperature T,, so that, for the standard enclosure

Nu = (Q/L(T, — T))(L/K),

Gr =gB(T, — T)L*v*. (27)

The third of the lines in Fig. 2 represents a simplified
computational model for the conjugate problem. As
noted earlier, the conjugate problem was solved by
cyclically passing back and forth between the internal
and external flows until convergence was attained. An
approximate solution can be obtained for the internal
flow which avoids these cyclic visitations and which is,
therefore, at the same level of computational
involvement as the standard enclosure problem. The
idea is to carry out only the first part of the first round
of the cyclic process. This amounts to solving the
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internal flow problem using equation (23) with Q = 1
as the boundary condition at X = 1, but with no
visitation of the boundary-layer problem. This
approach, albeit approximate, yields a solution of the
conjugate problem without conjugate computations.

Examination of Fig. 2 reveals the expected trend
whereby the average Nusselt number increases
monotonically with the Grashof number. The

dependence of Nu on Gr, while not precisely linear on
logarithmic coordinates, is very nearly linear over
most of the range. For the conjugate problem, the
results can be represented to within +1.5%, for Gr >
10* by the power law

Nu = 0.0907Gr0-285. (28)

For Gr < 10% there is a departure from the
(logarithmically) linear behavior indicated by
equation (28), so that at Gr = 10 the Nu of (28) is
about 7%, low compared with the value from the
computer solutions.

The existence of a power-law representation for the
heat transfer in a conjugate convection problem is, in
itself, worthy of note. Although the two participating
flows individually yield power-law representations at
sufficiently high Grashof numbers, this is no guarantee
that the conjugate problem will also yield a power law.
In the present instance, perhaps it is the fact that the
power-law exponents for the component flows are
more or less the same (in the 0.25-0.30 range) that
establishes the power law for the conjugate problem.

The heat transfer results from the first-pass solutions
for the conjugate problem lie slightly below those for
the fully converged solutions, the maximum deviations

being about 8%. In view of the computational
simplifications afforded by the first-pass solution, an
inaccuracy of 8% may be regarded as tolerable.

The results for the standard enclosure problem are
well represented (albeit not precisely) by a power law
which applies over the entire range investigated

Nu = 0.141Gr°°. (29)

Equation (29) represents the computed results to
+ 1.8%. The exponent in equation (29} is very nearly
the same as that in equation (28), and a common
exponent might well have been used.

To compare the results for the conjugate problem
with those for the standard enclosure requires that
some specification be made of the relative magnitudes
of (T, — T,)and (T, — T), since these temperature
differences appear in the respective Nusselt and
Grashof numbers. For the case in which these
temperature differences are the same, the Nusselt
numbers for the conjugate problem are about 60%; of
those for the standard enclosure for Gr > 10*, with
somewhat smaller deviations at lower Grashof

numbers. The lower Nu values for the conjugate
problem can be attributed to the thermal resistance of
the external flow. It is, however, quite remarkable that
the deviations are so uniform over so large a range of
Grashof numbers.

Attention will now be turned to the local heat
transfer results for the thermally active walls. These
results are shown in Figs. 3 and 4 for the left-hand wall
(the heated wall) and the right-hand wall (the cooled
wall), respectively. Each figure is subdivided into two
panels [(a) and (b)]. The (a) panel conveys the

F1G. 3. Local heat flux distributions for the heated isothermal wall.



902

qL/k(T,-T,)

E. M. Sparrow and C. PRAKASH

40

/~35

F1G. 4. Local heat flux distributions for the convectively cooled wall.

distributions of the local heat flux for the conjugate
problem while the (b) panel shows comparisons
between results for the conjugate problem and the
standard enclosure.

Turning first to Fig. 3(a), it may be noted that the
fluid flow is in the direction of increasing y. Thus, as the
fluid passes upward along the hot wall, its temperature
increases and the boundary layer thickens, with a
resultant decrease of the local heat flux as portrayed in
the figure. The sharpness of the decrease is most
marked at the higher Grashof numbers. At lower
Grashof numbers, convection wanes and the
distribution becomes more uniform as conduction
takes over. The shapes of the high-Gr distributions in
the neighborhood of y = 0 suggest the presence of a
low-velocity region (perhaps a sluggish recirculation
zone) in the corner at the base of the wall.

In Fig. 3(b), the heat flux distributions for the
conjugate problem are compared with those for the
standard enclosure for Gr = 10° and 10’. The
distribution curves for the two problems are seen to be
remarkably similar in shape, suggesting similarity in
the flow fields adjacent to the hot wall. For
quantitative comparisons of heat flux magnitudes, it is
once again necessary to specify the relative magnitudes
of (T, — T,)and (T, — T,). For the case where these
temperature differences are the same, the heat fluxes
for the standard enclosure exceed those for the
conjugate problem, the percentage deviations being
similar to that for the overall heat transfer (i.e. the
average Nusselt number).

In assessing the local heat flux distributions of Fig. 4
for the cooled wall (ie., the right-hand wall), it is

relevant to note that the internal flow moves
downward along the wall, i.e. from y/L = 1to y/L = 0.
Thus, it might be expected that the heat flux would
decrease as y/L decreases from 1 to 0. This trend is, in
general, in evidence in Fig. 4(a), which conveys the
results for the conjugate problem. However, it is
interesting to note that these decreases of g along the
flow direction are substantially smaller than those of
Fig. 3 for the hot wall. The reason for the greater
uniformity of g on the cooled wall is the counterflow
nature of the heat transfer process at that wall. As
indicated in Fig. 1(b), the downward internal flow
transfers heat to the upward external flow. The
tendency for g to take on a local maximum at y = Ocan
be attributed to the very high values of the external
heat transfer coefficient in that region.

In Fig. 4(b), comparisons are made between the
cooled-wall heat flux distributions for the conjugate
problem and the standard enclosure problem. These
comparisons show that the heat flux for the standard
enclosure is much more nonuniform than that for the
conjugate problem. This greater nonuniformity for the
standard problem is due to the absence of the
aforementioned counterflow effect which prevails in
the conjugate problem.

Wall temperature distributions

The distribution of the temperature along the wall
which separates the internal and external flows is
presented in Fig. 5(a) with the Grashof number as the
curve parameter. Comparisons of the results from the
first-pass solutions with those from the fully converged
solutions are shown in Fig. 5(b).
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FiG. 5. Temperature distributions along the wall which separates the internal and external flows.

In interpreting the results of the figure, it should be
noted that the direction of the internal flow is from y/L
= 1 to 0 and that the internal flow loses heat to the
external flow as it passes along the wall. The decrease
of the wall temperature with decreasing y/L is, '
therefore, entirely plausible. Also plausible are the
progressively higher values of the wall temperature at
y/L = 1 which accompany an increase in the Grashof

number. The temperature elevation occurs because the
higher Grashof number flow is more effective in
carrying higher temperature fluid from the hot wall
across to the convectively cooled wall.

The wall temperature is seen to be increasingly more
nonuniform as the Grashof number increases. The
relative uniformity of the temperature at the lower
Grashof numbers is due to the waning of convection
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FIG. 6. Representative temperature distributions along the adiabatic walls of the enclosure. (a) Upper wall;
(b) lower wall.
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FiG. 7. Distributions of Q to be used in the Nusselt number representation, equation (30), for the external
natural convection flow.

and the growing importance of heat conduction.

Figure 5(b) shows that the first-pass solution yields
temperature distributions which are similar in shape to
those of the converged solution. Generally, the first-
pass solution tends to overestimate the wall
temperature, but the errors appear to be tolerable.

Representative temperature distributions along the
adiabatic walls of the enclosure are shown in Fig. 6(a),
which pertains to the upper wall, while Fig. 6(b)
pertains to the lower wall. To facilitate interpretation
of the results, the coordinate directions have been
taken along the respective directions of fluid flow as
indicated in the inset of each part of the figure. Results
are provided both for the conjugate problem and for
the standard enclosure problem (solid and dashed
lines, respectively).

In considering Fig. 6(a), note may be taken of the
significant Grashof-number-related differences in the
temperature distribution along the upper wall. At high
Grashof numbers, the vigorous recirculating flow
blankets the upper wall with hot fluid (ie. fluid
previously heated at the left-hand wall of the
enclosure). Consequently, high temperatures are in
evidence along the upper wall. On the other hand, at
relatively low values of Gr, the convection is relatively
weak and conduction forces a more or less linear
temperature variation across the enclosure. The
qualitative trends are similar for both the conjugate
problem and the standard enclosure problem.

The just-cited factors which operate to establish the
temperature distributions along the upper wall are
also operative along the lower wall, as can be seen in
Fig. 6(b). The orientations of the curves in the two

parts of the figure are just opposite because of the
opposite fluid-flow directions along the upper and
lower walls. The quantitative deviations between the
high-Gr solid and dashed curves in the right-hand
panel are greater than those in the left-hand panel. This
is because the thermal conditions along the right-hand
wall are different in the conjugate and standard
enclosure problems.

Nusselt numbers for the external flow

From the converged solutions for the conjugate
problem, the local heat transfer coefficients and
corresponding Nusselt numbers for the external
natural convection flow have been deduced. These
results may be phrased in the form

hy/k = 0.3532Q[gB(T,, — T)y*/V*]'"*  (30)

where Q = Q(y) is presented in Fig. 7 and T, is the
local wall temperature at y.

With Q = 1, equation (30) depicts the application of
the h formula for uniform wall temperature to a
situation where the wall temperature varies along the
flow direction. The fact that Q # 1 (Fig. 7)
demonstrates that direct local application of the
isothermal wall formula to a nonisothermal wall is not
strictly valid. In a sense, Q plays the role of a correction
factor which redresses any errors made by local
application of the / formula.

Figure 7 shows that the distribution of Q along the
wall evolves with increasing Grashof number. At the
lowest Grashof number investigated, Q varies
smoothly with y and departs only moderately from
unity. As Gr increases, the level of Q tends at first to
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Fi1G.8. Streamline pattern for Gr = 103. The curve parameter

is y/v.

increase, but further increases in Gr are mainly
instrumental in altering the shape of the Q distribution.
For Grashof numbers greater than 103, the Q values
are, for the most part, in the range 1.2—1.3. The fact that
Q > 1 is consistent with the increase of T, in the
direction of the boundary-layer flow.

Flow patterns

The qualitative nature of the fluid flow in the
enclosure can be effectively visualized with the aid of
streamline maps. Representative streamline maps
based on the solutions of the conjugate problem are
presented in Figs. 8 and 9. The figures correspond to
Grashof numbers of 10° and 107, which are,
respectively, the smallest and largest values that were
investigated. The numerical labels that are used to
identify the contour lines in each figure correspond to

20

FI1G.9. Streamline pattern for Gr = 107. The curve parameter

is /v,
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the dimensionless streamfunction y/v.

Comparison of Figs. 8 and 9 reveals numerous
Grashof-number-related differences in the flow fields.
At low Grashof numbers, there is an all-encompassing
symmetry such that the flow field adjacent to the
adiabatic walls (the horizontal walls) is virtually
identical to that adjacent to the thermally active walls
(the vertical walls). On the other hand, at high Grashof
numbers, the streamlines are crowded together next to
the active walls while they are widely spaced adjacent
to the adiabatic walls. The crowding of the streamlines
is indicative of a boundary-layer-type flow along the
active walls. Figure 8 shows that a Grashof number of
103 is too low to produce boundary layer flows.

Aside from the aforementioned differences in the
shapes of the streamlines, there are also marked
differences in the magnitudes of the streamfunction for
the two Grashof numbers. The streamfunction values
of Gr = 107 are about 40 times those for Gr = 10°.
This means that the buoyancy-induced mass flows for
the two cases bear that ratio to each other.
Furthermore, since 4 = d/dy and v = —Jy/0x, it is
clear that the velocities are markedly larger at higher
Grashof numbers. In particular, the solutions show
that U, for Gr = 107 is about 100 times the U,
valuefor Gr = 103; the corresponding ratio of the V',
values is about 250.

In the streamline map for Gr = 107, modest
asymmetries of the flow with respect to the two active
walls are in evidence. These asymmetries are due to the
different thermal boundary conditions at the two
walls.

The streamline maps of Figs. 8 and 9 are
qualitatively similar to those for the standard
enclosure at the same values of the Grashof number.
Quantitative comparisons require specification of the
relationship between the temperature differences (T,
— T,)and (T, — T.) which appear in the respective
Grashof number definitions.

CONCLUDING REMARKS

Solutions have been obtained here for a conjugate
natural convection problem encompassing a
buoyancy-driven recirculating flow in an enclosure
and an external natural-convection boundary-layer
flow along one of the walls of the enclosure. In addition
to the complete numerical solutions, a set of
approximate solutions were carried out which avoids
computational involvement with the boundary-layer
flow and focuses all numerical activity in the enclosure.
To provide perspective for the results of the conjugate
problem, numerical solutions were also obtained for
the standard enclosure problem in which the two
vertical walls have prescribed uniform temperatures
while the two horizontal walls are adiabatic.

The solutions spanned the range of Grashof number
between 103 and 107, with the Prandtl number equal to
0.7 in all cases. The enclosure geometry was square.

The overall heat transfer characteristics for the
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conjugate problem as a whole, encompassing both the
internal and external flows, were expressed in terms of

the average Nusselt number Nu. For Gr > 10, the
Nu-Gr relationship was well represented (to within
+1.5%) by the power law: Nu = 0.0907Gr%285. At
low Gr, the Nu values tend to fall above those given by

the power law. The approximate solutions yielded Nu
values that are slightly lower than those from the
complete solutions, with a maximum deviation of

about 8%,. The Nu results for the standard enclosure

could also be well represented by a power law Nu =
0.141Gr°-2? to within + 1.8% over the range Gr > 10°.
If (T, — T,) for the conjugate problem were equal to

(T, — T,) for the standard enclosure, the Nu for the
former would be about 60% of those for the latter when
Gr > 10%.

The local heat fluxes at the thermally active walls of
the enclosure tend to decrease in the direction in which
fluid flows along the respective walls. The extent of the
variation is much smaller along the convectively
cooled wall than along the isothermal heated wall,
reflecting the counterflow nature of the heat exchange
between the internal and external flows at the
convectively cooled wall. At lower Grashof numbers,
the local heat flux distributions tend toward greater
uniformity.

At the wall which separates the internal and external
flows, the temperature decreases in the direction of the
internal flow. This decrease results from the heat loss
by the internal flow to the external flow as it passes
along the wall. The extent of the temperature variation
along the wall increases with increasing Grashof
number. The temperatures at the adiabatic walls of the
enclosure are strongly affected by the Grashof number.
At high Grashof numbers, the relatively vigorous
recirculating flow impresses its temperature history on
the adiabatic walls, while at low Grashof numbers heat

conduction is the key factor in establishing the
temperature at these walls.

The local heat transfer coefficients for the external
natural convection are generally higher than those
predicted by locally applying the & formula for uniform
wall temperature. At the higher Grashof numbers, the
deviations are in the 20-309; range.

Streamline maps revealed marked Grashof-
number-related differences in the flow pattern within
the enclosure. At low Gr, the flow field adjacent to the
adiabatic walls is similar to that adjacent to the
thermally active walls, and there is no evidence of
boundary-layer-type flow. On the other hand, at large
Gr, boundary layer flows occur adjacent to the active
walls but not along the passive walls.
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INTERACTION ENTRE LA CONVECTION NATURELLE DANS UNE CAVITE ET UN
ECOULEMENT EXTERNE DE CONVECTION NATURELLE A COUCHE LIMITE

Résumé — On analyse la convection naturelle dans une cavité carrée dont une paroi verticale est refroidie par
un écoulement externe de convection naturelle avec couche limite. L’autre paroi verticale est maintenue 4
température uniforme alors que les parois horizontales sont adiabatiques. Le probléme de couplage de
convection naturelle interne-externe est résolu numériquement pour des nombres de Grashof entre 103 et 107
et pour un nombre de Prandtl de 0,7. On obtient aussi des solutions approchées a partir d’un modéle qui évite
les calculs de type conjugué. Pour comparaison, on donne les solutions pour le probléme classique de
convection naturelle dans une cavité avec température imposée sur les parois verticales et avec parois
horizontales adiabatiques. Pour les caractéristiques moyennes du transfert thermique, le nombre de Nusselt
moyen dépend du nombre de Grashof suivant la loi de puissance Nu = 0,0907 Gr°*%% pour Gr > 10*. Ce
nombre de Nusselt est environ soixante pour cent de celui pour la cavité classique, aux mémes valeurs du
nombre de Grashof. Les variations du flux local le long de la paroi refroide par convection sont sensiblement
plus faibles que celles le long de la surface isotherme chaude, traduisant 'opposition entre les effets
thermiques des écoulements interne et externe. De plus les variations de température le long de la paroi
refroidie par convection croissent lorsque le nombre de Grashof augmente. Le nombre de Grashof agit sur la
distribution de température le long des parois adiabatiques. La carte des lignes de courant montre une petite
différence entre les champs d’écoulement adjacents aux parois thermiquement actives et passives aux faibles
nombres de Grashof, mais des différences marquées sont visibles aux grands nombres de Grashof. Pour la
convection naturelle externe, les coefficients locaux de transfert thermique sont généralement plus grands que
ceux obtenus par application de la formule relative au coefficient de transfert sur une plaque isotherme.
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WECHSELWIRKUNG ZWISCHEN INNERER FREIER KONVEKTION IN EINEM
HOHLRAUM UND EINER EXTERNEN GRENZSCHICHTSTROMUNG DURCH FREIE
KONVEKTION

Zusammenfassung — Es wird eine Untersuchung durchgefiihrt iiber die freie Konvektion in einem
quadratischen Hohlraum, von dessen vertikalen Winden eine durch eine Grenzschichtstromung infolge
dufBerer freier Konvektion gekiihlt wird. Die andere vertikale Wand wird auf gleichférmiger Temperatur
gehalten, wihrend die horizontalen Winde adiabat sind. Das auftretende gekoppelte Problem interner und
externer freier Konvektion wurde numerisch fiir Grashof-Zahlen zwischen 10° und 107 und fiir eine Prandtl-
Zahl von 0,7 gelGst. Naherungslgsungen wurden auch mit einem Modell erzielt, welches die gekoppelte
Losung vermeidet. Zu Vergleichszwecken wurde eine Anzahl Losungen fiir das Standardproblem freier
Konvektion in einem Hohlraum berechnet, das durch vorgegebene gleichformige Temperaturen an den
vertikalen Winden und adiabate horizontale Winde gekennzeichnet ist. Fiir den Gesamtwirmedurchgang,
der sowohl die interne als auch dje externe freie Konvektion umfaBt, zeigt die mittlere Nusselt-Zahl eine

Abhiingigkeit von der Grashof-Zahl nach einem Potenzgesetz, das bei Gr < 10* durch Nu = 0,0907Gr?-283
gegeben ist. Diese Nusselt-Zahlen erreichen etwa 60 %, der Werte fiir den Standardhohlraum bei iiblichen
Werten der entsprechenden Grashof-Zahlen. Die ortlichen Variationen des Warmestroms entlang der
konvektiv gekiihlten Wand waren merklich kleiner als die an der beheizten isothermen Wand, was im
Gegenstromcharakter des Warmeaustausches zwischen interner und externer Strémung begriindet ist.
AuBerdem nahmen die Temperaturvariationen entlang der konvektiv gekiihlten Wand mit zunehmender
Grashof-Zahl zu. Die Grashof-Zahl beeinflufite auch maBgebend die Temperaturverteilungen entlang der
adiabaten Winde. Stromlinienbilder zeigten bei niedrigen Grashof-Zahlen wenig Unterschiede zwischen den
Stromungsfeldern nahe den thermisch aktiven und thermisch passiven Winden, doch wurden markante
Unterschiede bei hohen Grashof-Zahlen sichtbar. Bei der externen freien Konvektion waren die ortlichen
Wiirmeiibergangskoeffizienten im allgemeinen groBer als die durch ortliche Anwendung der klassischen
Formeln fiir die isotherme Wand berechneten Werte.

B3AUMOJENCTBHUE MEXJY BHYTPEHHENA ECTECTBEHHOW KOHBEKLMEWM
B MNOJIOCTU WU BHEINIHUM TOIrPAHUYHBIM CJIOEM, OBPA3OBAHHbBIM
ECTECTBEHHOW KOHBEKLIMEH

Annoranua — [1poBenén aHanu3 ecTeCTBEHHON KOHBEKLMH B KBAAPATHOM NONOCTH, OQHA H3 BEPTHKAIlb-
HBIX CTEHOK KOTOPOH OXJIa)XXAaeTCsi BHELIHHMM NOTPAaHUYHBIM CJioeM, OOPa3OBaHHBIM ECTECTBCHHOM
xousekuueit. Ha BTopoii BepTHKanbHOH CTEHKE MOANCPKHBACTCS OZHOPOIHAs TeMNEepaTypa, TOPH3OH-
TaJbHbIC CTEHKH SIBAAIOTCA anmabaTudeckumu. ConpskEHHAS 3amaya IS BHYTPCHHEH M BHEIWIHEH
€CTECTBEHHON KOHBEKUMHA PewieHa YncIenno Aa yncen I'pacroda ot 10° 1o 107 i uncna Npangras 0,7.
IMpubnuxEnnple pellieHHus ObUTH TAKXE IOJIYYEHbI IPH NOMOLUM MOIESH, He CBA3AHHOM C CONpsKEHHON
nocTaHoBKOl 3afaun. C HENbIO CPAaBHCHMS BRIMONHEH Psil PCLICHWA 1A H3BECTHOH CTaHAAPTHOM
3alauM O €CTECTBEHHOH KOHBEKIHH, XapaKTepH3ylouleHcs 3aJaHHLIMKH ONHOPOAHBEIMH TEMIEpaTypaMu
Ha BEPTHKAJIbHEIX CTEHKaX M anuMabaTHYeCKMMH rOpH30HTaIbHbLIMM CTeHKamu. Jlnd onmHcaHHs TEmio-
NIEpeHoca, BK/IIOYAIOIIEr0 Kak BHYTPCHHME, TaK H BHEUIHHE MOTOKH, NPEAJIOXKEHAa CTENEHHAS 33aBUCH-
MOCTh cpeaHero uucina Hyccensta ot umcna I'pacroda: Nu = 0,0907Gr®2%5 mna Gr > 10%. aunvie
yncna Hyccenbra coctapnsioT npumepHo 609, ot uncen Hyccenbra Ans cTAHZAPTHON 3amavuM NPH
COOTBETCTBYIOILIMX 3HaueHMAX uucen [pacroda. Beulo 0GHApYXeHO, YTO M3IMEHEHHS JI0KaJbHOrO
TENNOBOTO MOTOKA BAOJIL KOHBEKTHBHO OXJIAXJaeMOH CTEHKH 3HAYMTEJBLHO MEHbBIUE, HEXEIN BIOJIb
HarpeToil N30TEPMHYECKOH CTEHKH, 4TO 00YCIOBJICHO NPOTHBONOJIOXHBIMH HANPABACHUAMH IBUKEHHUS
BHYTPEHHEr0 H BHEIIHErO NoTokoB. KpoMe Toro, M3MeHeHHs TeMINepaTypbl BIOJbL KOHBEKTHBHO
OXJIaXK1AEMO}i CTEHKH BO3PACTaJIH ¢ yBenu4eHHeM uncna Ipacroda. Yucno I'pacroda umeno pewarouee
BJIMSHME TAKXKE M Ha pacnpefic/iecHHe TeMIEpaTyp BAOJIb aAHabaTHYECKHX CT€HOK. KapTuHel AHHHA
TOKa NPOAEMOHCTPHPOBATH HeOoJNblLIOE PA3IHYHE MEXIY MNOJAMH CKOPOCTEH, NpHWICTArOHUMH K
TEPMHYECKH aKTHBHBIM H TEPMHYECKH NMACCHBHBLIM CTEHKaM NpuH Maibix 4uciaax I'pacroda, o npu
6onpimx uncnax I'pacroga 310 pasznuuue 6BUTO spKo BhIPaXeHHbIM. [IJ1A Cly4as BHELIHEH eCTeCTBEHHOM
KOHBEKIIMM MECTHBIE KO3 DULIMEHTH TeNN00OMeHa 0OBIMHO PEBOCXOANIH KOIPOHULMEHTHI, NPeaCKa3bl-
BaeMBIE kJ1accHyecKkoil ¢opMynoi ans koadduumenTa TenaoobMeHa Ha H30TEPMHYECKOH NacTUHE.
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